Free-by-cyclic groups have solvable conjugacy problem

نویسنده

  • A. Martino
چکیده

We show that the conjugacy problem is solvable in [finitely generated free]-by-cyclic groups, by using a result of O. Maslakova that one can algorithmically find generating sets for the fixed subgroups of free group automorphisms, and one of P. Brinkmann that one can determine whether two cyclic words in a free group are mapped to each other by some power of a given automorphism. The algorithm effectively computes a conjugating element, if it exists. We also solve the power conjugacy problem and give an algorithm to recognize if two given elements of a finitely generated free group are Reidemeister equivalent with respect to a given automorphism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Conjugacy Problem for Graph Products with Cyclic Edge Groups

A graph product is the fundamental group of a graph of groups Amongst the simplest examples are HNN groups and free products with amalgamation. The conjugacy problem is solvable for recursively presented graph products with cyclic edge groups over finite graphs if the vertex groups have solvable conjugacy problem and the sets of cyclic generators in them are semicritical. For graph products ove...

متن کامل

Free-by-cyclic Groups Have Solvable Conjugacy Problem

We show that the conjugacy problem is solvable in [finitely generated free]-by-cyclic groups, by using a result of O. Maslakova that one can algorithmically find generating sets for the fixed subgroups of free group automorphisms, and one of P. Brinkmann that one can determine whether two cyclic words in a free group are mapped to each other by some power of a given automorphism. We also solve ...

متن کامل

An Hnn-extension with Cyclic Associated Subgroups and with Unsolvable Conjugacy Problem

In this paper, we consider the conjugacy problem for HNNextensions of groups with solvable conjugacy problem for which the associated subgroups are cyclic. An example of such a group with unsolvable conjugacy problem is constructed. A similar construction is given for free products with amalgamation.

متن کامل

The conjugacy problem in free solvable groups and wreath product of abelian groups is in TC$^0$

We show that the conjugacy problem in a wreath product A ≀B is uniformTC -Turing-reducible to the conjugacy problem in the factors A and B and the power problem in B. Moreover, if B is torsion free, the power problem for B can be replaced by the slightly weaker cyclic submonoid membership problem for B, which itself turns out to be uniform-TC-Turing-reducible to conjugacy problem in A ≀B if A i...

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009